近兩年,中考數(shù)學試卷中降低了對平面幾何的要求,但就此認為對于學生的思維訓練可以放松,那就錯了。數(shù)學始終應(yīng)包含其特有的知識、思想與方法、活動應(yīng)用、知識審美等四個層面,而培養(yǎng)一名學生嚴密的邏輯思維能力和推理論證能力更是一刻不離地貫穿其中的。
不少初中生感到平面幾何比較難學,特別是遇到需要添加輔助線的習題,有時會感到無從下手。在此,我們對初中幾何中添加輔助線的思路從以下幾個方面進行了總結(jié),希望能幫助參加中考的學生有效復(fù)習備考。
揭示圖形中隱含的性質(zhì)(擴大原題的“已知”)
當題目的題設(shè)和結(jié)論之間的邏輯關(guān)系不太明朗、甚至“彼此孤立”時,可以通過添加適當?shù)妮o助線,把題設(shè)條件中隱含的有關(guān)性質(zhì)充分顯現(xiàn)出來,擴大了已知條件,從而有利于迅速找到題目的最近切入口,進而推導(dǎo)出題目的結(jié)論。
【例題1】如圖1,D是⊿ABC的邊AC的中點,延長BC到點E,使CE=BC,ED的延長線交AB于點F,求ED∶EF
分析:思路一:過C作AB的平行線交DE于G,由D是AC的中點可得FD=DG,由CE=BC可得FG=GE,從而得ED∶EF=3∶4
思路二:過D作BE的平行線交AB于I,類似法一得ID∶BC=1∶2,ID∶BE=1∶4,從而得ED∶EF=3∶4
思路三:過D作AB的平行線交BE于H,易得BH=HC=1/4BE,得ED∶EF=3∶4
說明:本題三種思路所添加的三條平行線,均是為了充分利用“D是⊿ABC的邊AC的中點”這一條件,使本來感覺比較薄弱的一個條件,在平行線的作用下變得內(nèi)涵豐富,既有另外一邊的中點出現(xiàn),又可以利用三角形的中位線定理,這樣使用起來就更加得心應(yīng)手。
構(gòu)造圖形,補題設(shè)(已知)的不足有時必須添加一些圖形,使題設(shè)條件能充分顯示出來,從而為定理的應(yīng)用創(chuàng)造條件,或者使不能直接證得的結(jié)論轉(zhuǎn)化為與它等價的另一個結(jié)論,便于思考與證明。
【例題2】已知:O是正方形ABCD內(nèi)一點,∠OBC=∠OCB=15°求證:⊿AOB是等邊三角形
分析:(如圖2)構(gòu)建三角形OMC。使DH⊥OC于H,則∠2=15°作∠DCM=15°則⊿DMC≌⊿BOC且∠MCO=60°DM=MC=OC=OM
∴∠DMO=360°-60°-150°=150°
∴∠1=∠MOD=15°
從而有∠DOC=∠DCO=75°,DO=DC=AD=AB=AO
說明:本題就是利用輔助線構(gòu)造出一個和要證明的結(jié)論類似的等邊三角形,然后借助構(gòu)造出的圖形解答題目。
把分散的幾何元素聚集起來
有些幾何題,條件與結(jié)論比較分散。通過添加適當?shù)妮o助線,將圖形中分散、“遠離”了的元素聚集到有關(guān)的圖形上,使他們相對集中、便于比較、建立關(guān)系,從而找出問題的解決途徑。
【例題3】如圖8,△ABC中,∠B=2∠C,且∠A的平分線為AD,問AB與BD的和等于AC嗎?
思路一:如圖9,在長線段AC上截取AE=AB,由△ABD≌△AED推出BD=DE,從而只需證EC=DE.
思路二:如圖10,延長短線段AB至點E,使AE=AC,因而只需證BE=BD,由△AED≌△ACD及∠B=2∠C,可證∠E=∠BDE,從而有BE=BD.
思路三:如圖10,延長AB至E,使BE=BD,連接ED,由∠ABD=2∠C,∠ABD=2∠E,可證△AED≌△ACD,可得AE=AC,即AC=AB+BD.
說明:這道例題就是利用輔助線,把本來不在一條直線的線段AB與BD聚集到一條直線上來,這樣就可以輕松得到AB+BD或者AC——AB,然后題目就迎刃而解了。
平面幾何中添加輔助線的方法是靈活多變的,這就要求我們熟練掌握數(shù)學中的基本概念和基本定理,在實踐探索中經(jīng)常進行歸類總結(jié),仔細分析題目給我們的條件,找到隱含的及一些有規(guī)律的信息。 上海市實驗學校 唐惠康 王海生
·2021年中考生中考指南:必備物品清單 請查收! (2021-6-15 10:04:56)
·2021中考“錦囊”請收好:作答規(guī)范很重要 (2021-6-15 9:52:52)
·2021中考前這些事兒可千萬別做 (2021-6-11 20:27:44)
·2021年中考失利咋辦? (2021-5-25 16:37:03)
·2021年中考迎來大調(diào)整 這三點家長不要忽略 (2021-4-28 11:09:02)
2022年海南中考地理真題及答案已公布
2022年海南中考生物真題及答案已公布
2022年海南中考歷史真題及答案已公布
2022年海南中考政治真題及答案已公布
2022年海南中考化學真題及答案已公布
2022年海南中考物理真題及答案已公布
2022年海南中考英語真題及答案已公布
2022年海南中考數(shù)學真題及答案已公布
2022年海南中考語文真題及答案已公布
國家 | 北京 | 天津 | 上海 | 重慶 |
河北 | 山西 | 遼寧 | 吉林 | 江蘇 |
浙江 | 安徽 | 福建 | 江西 | 山東 |
河南 | 湖北 | 湖南 | 廣東 | 廣西 |
海南 | 四川 | 貴州 | 云南 | 西藏 |
陜西 | 甘肅 | 寧夏 | 青海 | 新疆 |
黑龍江 | 內(nèi)蒙古 | 更多 |
·執(zhí)業(yè)醫(yī)師考試培訓 試聽 ·經(jīng)濟師考試培訓 試聽
·執(zhí)業(yè)藥師考試培訓 試聽 ·報關(guān)員考試培訓 試聽
·銀行從業(yè)考試培訓 試聽 ·會計證考試培訓 試聽
·證券從業(yè)考試培訓 試聽 ·華圖公務(wù)員培訓 試聽
·二級建造師考試培訓 試聽 ·公務(wù)員培訓 網(wǎng)校 試聽
·一級建造師考試培訓 試聽 ·結(jié)構(gòu)師考試培訓 試聽
·注冊建筑師考試培訓 試聽 ·造價師考試培訓 試聽
·質(zhì)量資格考試培訓 試聽 ·咨詢師考試培訓 試聽
·衛(wèi)生職稱考試培訓 試聽 ·監(jiān)理師考試培訓 試聽
·報關(guān)員考試培訓 試聽 ·經(jīng)濟師考試培訓 試聽
·銀行從業(yè)考試培訓 試聽 ·會計證考試培訓 試聽
·證券從業(yè)考試培訓 試聽 ·注冊會計師培訓 試聽
·期貨從業(yè)考試培訓 試聽 ·統(tǒng)計師考試培訓 試聽
·國際商務(wù)師考試培訓 試聽 ·稅務(wù)師考試培訓 試聽
·人力資源師考試培訓 試聽 ·評估師考試培訓 試聽
·管理咨詢師考試培訓 試聽 ·審計師考試培訓 試聽
·報檢員考試培訓 試聽 ·高級會計師考試培訓 試聽
·外銷員考試培訓 試聽 ·公務(wù)員 試聽 教育門戶
·二級建造師考試培訓 試聽 ·招標師考試培訓 試聽
·造價師考試培訓 試聽 ·物業(yè)管理師考試培訓 試聽
·監(jiān)理師考試培訓 試聽 ·設(shè)備監(jiān)理師考試培訓 試聽
·安全師考試培訓 試聽 ·巖土工程師考試培訓 試聽
·咨詢師考試培訓 試聽 ·投資項目管理師培訓 試聽
·結(jié)構(gòu)師考試培訓 試聽 ·公路監(jiān)理師考試培訓 試聽
·建筑師考試培訓 試聽 ·衛(wèi)生資格考試培訓 試聽
·質(zhì)量資格考試培訓 試聽 ·執(zhí)業(yè)藥師考試培訓 試聽
·造價員考試培訓 試聽 ·執(zhí)業(yè)醫(yī)師考試培訓 試聽