一、選擇題
1. (2014•年山東東營,第4題3分)下列命題中是真命題的是( )
A. 如果a2=b2,那么a=b
B. 對角線互相垂直的四邊形是菱形
C. 旋轉前后的兩個圖形,對應點所連線段相等
D. 線段垂直平分線上的點與這條線段兩個端點的距離相等
考點: 命題與定理.
分析: 利用菱形的判定、旋轉的性質及垂直平分線的性質對每個選項進行判斷后即可得到正確的選項.
解答: 解:A、錯誤,如3與﹣3;
B、對角線互相垂直的平行四邊形是菱形,故錯誤,是假命題;
C、旋轉前后的兩個圖形,對應點所連線段不一定相等,故錯誤,是假命題;
D、正確,是真命題,
故選D.
點評: 本題考查了命題與定理的知識,解題的關鍵是理解菱形的判定、旋轉的性質及垂直平分線的性質.
2.(2014•四川遂寧,第9題,4分)如圖,AD是△ABC中∠BAC的角平分線,DE⊥AB于點E,S△ABC=7,DE=2,AB=4,則AC長是( )
A. 3 B. 4 C. 6 D. 5
考點: 角平分線的性質.
分析: 過點D作DF⊥AC于F,根據角平分線上的點到角的兩邊距離相等可得DE=DF,再根據S△ABC=S△ABD+S△ACD列出方程求解即可.
解答: 解:如圖,過點D作DF⊥AC于F,
∵AD是△ABC中∠BAC的角平分線,DE⊥AB,
∴DE=DF,
由圖可知,S△ABC=S△ABD+S△ACD,
∴×4×2+×AC×2=7,
解得AC=3.
故選A.
點評: 本題考查了角平分線上的點到角的兩邊距離相等的性質,熟記性質是解題的關鍵.
3.(2014•四川南充,第5題,3分)如圖,將正方形OABC放在平面直角坐標系中,O是原點,A的坐標為(1, ),則點C的坐標為( )
A.(﹣ ,1) B. (﹣1, ) C. ( ,1) D. (﹣ ,﹣1)
分析:過點A作AD⊥x軸于D,過點C作CE⊥x軸于E,根據同角的余角相等求出∠OAD=∠COE,再利用“角角邊”證明△AOD和△OCE全等,根據全等三角形對應邊相等可得OE=AD,CE=OD,然后根據點C在第二象限寫出坐標即可.
解:如圖,過點A作AD⊥x軸于D,過點C作CE⊥x軸于E,
∵四邊形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,
又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,
在△AOD和△OCE中, ,∴△AOD≌△OCE(AAS),
∴OE=AD= ,CE=OD=1,∵點C在第二象限,∴點C的坐標為(﹣ ,1).故選A.
點評: 本題考查了全等三角形的判定與性質,正方形的性質,坐標與圖形性質,作輔助線構造出全等三角形是解題的關鍵,也是本題的難點.
4. (2014•益陽,第7題,4分)如圖,平行四邊形ABCD中,E,F是對角線BD上的兩點,如果添加一個條件使△ABE≌△CDF,則添加的條件 是( )
(第1題圖)
A. AE=CF B. BE=FD C. BF=DE D. ∠1=∠2
考點: 平行四邊形的性質;全等三角形的判定.
分析: 利用平行四邊形的性質以及全等三角形的判定分別分得出即可.
解答: 解:A、當AE=CF無法得出△ABE≌△CDF,故此選項符合題意;
B、當BE=FD,
∵平行四邊形ABCD中,
∴AB=CD,∠ABE=∠CDF,
在△ABE和△CDF中
,
∴△ABE≌△CDF(SAS),故此選項錯誤;
C、當BF=ED,
∴BE=DF,
∵平行四邊形ABCD中,
∴AB=CD,∠ABE=∠CDF,
在△ABE和△CDF中
,
∴△ABE≌△CDF(SAS),故此選項錯誤;
D、當∠1=∠2,
∵平行四邊形ABCD中,
∴AB=CD,∠ABE=∠CDF,
在△ABE和△CDF中
,
∴△ABE≌△CDF(ASA),故此選項錯誤;
故選:A.
點評: 此題主要考查了平行四邊形的性質以及全等三角形的判定等知識,熟練掌握全等三角形的判定方法是解題關鍵.
5. (2014年江蘇南京,第6題,2分)如圖,在矩形AOBC中,點A的坐標是(﹣2,1),點C的縱坐標是4,則B、C兩點的坐標分別是( )
(第2題圖)
A.( ,3)、(﹣ ,4) B. ( ,3)、(﹣ ,4)
C.( , )、(﹣ ,4) D.( , )、(﹣ ,4)
編輯推薦:
·2021年中考英語備考練習題及答案(12) (2021-5-25 16:53:44)
·2021年中考英語備考練習題及答案(11) (2021-5-25 16:49:08)
·2019年浙江中考語文模擬試題 (2019-6-10 16:56:04)
·2019年上海中考語文模擬試題 (2019-6-10 16:55:04)
·2019年安徽中考語文模擬試卷 (2019-6-10 16:54:11)
2022年海南中考地理真題及答案已公布
2022年海南中考生物真題及答案已公布
2022年海南中考歷史真題及答案已公布
2022年海南中考政治真題及答案已公布
2022年海南中考化學真題及答案已公布
2022年海南中考物理真題及答案已公布
2022年海南中考英語真題及答案已公布
2022年海南中考數學真題及答案已公布
2022年海南中考語文真題及答案已公布
國家 | 北京 | 天津 | 上海 | 重慶 |
河北 | 山西 | 遼寧 | 吉林 | 江蘇 |
浙江 | 安徽 | 福建 | 江西 | 山東 |
河南 | 湖北 | 湖南 | 廣東 | 廣西 |
海南 | 四川 | 貴州 | 云南 | 西藏 |
陜西 | 甘肅 | 寧夏 | 青海 | 新疆 |
黑龍江 | 內蒙古 | 更多 |
·執業醫師考試培訓 試聽 ·經濟師考試培訓 試聽
·執業藥師考試培訓 試聽 ·報關員考試培訓 試聽
·銀行從業考試培訓 試聽 ·會計證考試培訓 試聽
·證券從業考試培訓 試聽 ·華圖公務員培訓 試聽
·二級建造師考試培訓 試聽 ·公務員培訓 網校 試聽
·一級建造師考試培訓 試聽 ·結構師考試培訓 試聽
·注冊建筑師考試培訓 試聽 ·造價師考試培訓 試聽
·質量資格考試培訓 試聽 ·咨詢師考試培訓 試聽
·衛生職稱考試培訓 試聽 ·監理師考試培訓 試聽