首頁 考試吧論壇 Exam8視線 考試商城 網絡課程 模擬考試 考友錄 實用文檔 求職招聘 論文下載 | ||
![]() |
2012中考 | 2012高考 | 2012考研 | 考研培訓 | 在職研 | 自學考試 | 成人高考 | 法律碩士 | MBA考試 MPA考試 | 中科院 |
|
![]() |
四六級 | 職稱英語 | 商務英語 | 公共英語 | 托福 | 托業 | 雅思 | 專四專八 | 口譯筆譯 | 博思 GRE GMAT | 新概念英語 | 成人英語三級 | 申碩英語 | 攻碩英語 | 職稱日語 | 日語學習 | 零起點法語 | 零起點德語 | 零起點韓語 |
|
![]() |
計算機等級考試 | 軟件水平考試 | 職稱計算機 | 微軟認證 | 思科認證 | Oracle認證 | Linux認證 華為認證 | Java認證 |
|
![]() |
公務員 | 報關員 | 銀行從業資格 | 證券從業資格 | 期貨從業資格 | 司法考試 | 法律顧問 | 導游資格 報檢員 | 教師資格 | 社會工作者 | 外銷員 | 國際商務師 | 跟單員 | 單證員 | 物流師 | 價格鑒證師 人力資源 | 管理咨詢師 | 秘書資格 | 心理咨詢師 | 出版專業資格 | 廣告師職業水平 | 駕駛員 網絡編輯 | 公共營養師 | 國際貨運代理人 | 保險從業資格 | 電子商務師 | 普通話 | 企業培訓師 營銷師 |
|
![]() |
衛生資格 | 執業醫師 | 執業藥師 | 執業護士 | |
![]() |
會計從業資格考試(會計證) | 經濟師 | 會計職稱 | 注冊會計師 | 審計師 | 注冊稅務師 注冊資產評估師 | 高級會計師 | ACCA | 統計師 | 精算師 | 理財規劃師 | 國際內審師 |
|
![]() |
一級建造師 | 二級建造師 | 造價工程師 | 造價員 | 咨詢工程師 | 監理工程師 | 安全工程師 質量工程師 | 物業管理師 | 招標師 | 結構工程師 | 建筑師 | 房地產估價師 | 土地估價師 | 巖土師 設備監理師 | 房地產經紀人 | 投資項目管理師 | 土地登記代理人 | 環境影響評價師 | 環保工程師 城市規劃師 | 公路監理師 | 公路造價師 | 安全評價師 | 電氣工程師 | 注冊測繪師 | 注冊計量師 化工工程師 | 材料員 |
|
![]() |
繽紛校園 | 實用文檔 | 英語學習 | 作文大全 | 求職招聘 | 論文下載 | 訪談 | 游戲 |
《分數除法》說課稿
一.說教材
我說課的內容是人教版課程標準實驗教科書六年級上冊的分數除法單元中的例1和例2。例1是分數除法的意義認識,例2是分數除以整數的計算。在這之前學生已經掌握了整數除法的意義和分數乘法的意義及計算,而本課的學習將為統一分數除法計算法則打下基礎。
例1先是對整數除法意義的回顧,再由100克=1/10千克,從而引出分數乘除法算式,通過類比使學生認識到分數除法的意義與整數除法的意義相同,都是‘已知兩個因數的積和其中一個因數,求另一個因數的運算’。例2是分數除以整數的計算教學,意在通過讓學生進行折紙實驗、驗證, 引導學生將‘圖’和‘式’進行對照分析,從而發現算法,感悟算理,同時也初步感受數形結合的思想方法。
根據剛才對教材的理解,本節課的教學目標是:
1、通過實例,使學生理解分數除法的意義與整數除法的意義是相同的。
2、動手操作,通過直觀認識使學生理解分數除以整數,引導學生正確地總結出計算法則,能運用法則正確地進行計算。
3、經歷觀察、猜測、實驗、驗證和歸納的過程,感受數形結合的思想方法,并從中發展抽象思維能力。
本課的重點是理解分數除法的意義和分數除以整數的計算方法;
本課的難點是分數除法一般算法的理解。這是因為要將除以一個數轉化為乘以它的倒數,在運算形式上由除法轉化為乘法,變化較大,而學生往往由于思維的定勢,一時不容易接受。所以本課的關鍵是如何引導學生在實驗和驗證中自主體驗和感悟。
二.說教法、學法
為了達成教學目標,本課的教學必須貫徹以學生為主體,堅持啟發與發現法相結合的教學方法,引導學生大膽猜想,提出有價值的問題,讓學生的思維活動得到有效的提升,動手實踐,在體驗中、在交流中發現規律。
學習方法上強調以探究學習法和動手操作法為主。認知結構理論告訴我們,學習是學生積極主動的內化過程。只有通過主動參與獲得的知識,才是有意義的。因此,在重難點的學習上,通過折紙實驗與驗證,數形結合,從而實現真正的理解。
三.說教學過程
開課,就對前一單元所學的分數乘法的計算和一個數乘分數的意義進行復習,目的在于為教學分數除以整數的計算方法打下基礎,因為分數除以整數就等于這個分數的幾分之一,根據一個數乘分數的意義,就用分數乘幾分之一就可以得到結果,而對于分數除法的意義,就直接利用例1的素材導出整數除法的意義再遷移到分數除法的意義。
(一) 問題創境,對比遷移,理解分數除法的意義。
在教學例1時,我沒有直接把教材中的三個問題端出來,而是讓學生通過教師給出的信息來提出數學問題,學生編出乘法問題并列式解答后,問學生:你能根據這個乘法問題編出兩個除法問題嗎?然后再一一列式解答,再通過對這三個算式的觀察比較,得到整數除法的意義。這樣安排教材,我的理解是:如果直接將素材一一呈現出來,感覺很單調泛味生硬,不能留住學生的注意力和激起學生學習的興趣,對思維活動就是一種壓抑,反過來我這樣安排,感覺是把靜態的教材動態的出現在學生面前,利用素材自問自答,對學生來說是一次有價值有效的思維活動,對學生的思維能力應該是有一個提升的,同時問題也可以激發學生學習數學的興趣,吸引學生的注意力。
然后指出問題中是以克為單位,如果以千克為單位,100克應該怎么改寫?改寫后,算式應該怎么列?后面兩題中的單位也改寫了,又怎么列式計算?用一系列的問題,遷引出分數乘除法的算式,再通過對分數乘除法算式的仔細觀察,觀察時引導學生對照整數乘除法的算式,找到之間的共同點,從而得到分數除法的的意義與整數除法的意義相同,我這樣教學的想法是:第一因為問題更有挑戰性而能更有效激發學生的興趣;第二鍛煉提高學生的觀察比較事物的能力;第三通過比較自然得出分數除法的的意義與整數除法的意義相同,讓學生有種水到渠成的感覺,體味到在數學中知識是存在相互聯系的。
在完成做一做中,學生快速回答了2/3×4=8/3 8/3÷4=( ) 8/3÷2/3=( )的結果后,問:你怎么這么快就得到結果了呢?這個問題能更好讓學生利用除法的意義來解決問題,從而加深對除法意義的理解。
相關推薦:
北京 | 天津 | 上海 | 江蘇 | 山東 |
安徽 | 浙江 | 江西 | 福建 | 深圳 |
廣東 | 河北 | 湖南 | 廣西 | 河南 |
海南 | 湖北 | 四川 | 重慶 | 云南 |
貴州 | 西藏 | 新疆 | 陜西 | 山西 |
寧夏 | 甘肅 | 青海 | 遼寧 | 吉林 |
黑龍江 | 內蒙古 |